

5050 Series

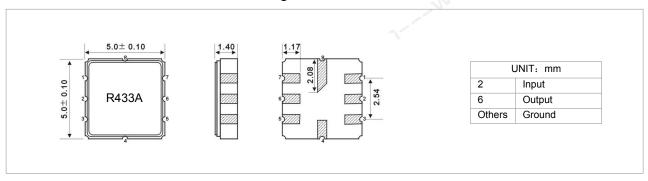
☑ CH5050-R433M75K-NT

RoHS Compliant 2002/95/EC Free

X Application & Features

- RF,Wireless
- Automotive Equipment at Other
- 5.0×5.0×1.4mm Metal Package
- This specification shall cover the characteristics of 1-port SAW resonator with 433.920M used for remote-control security.

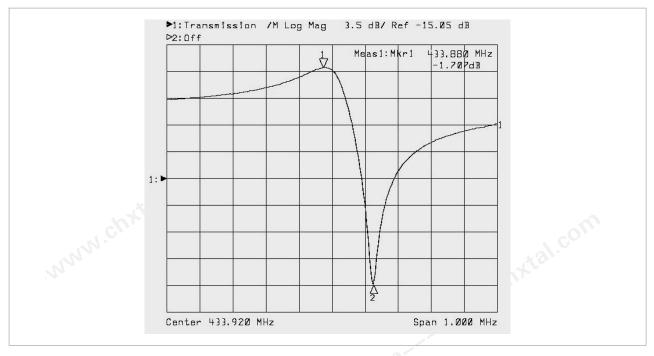
Majic


X Maximum Rating

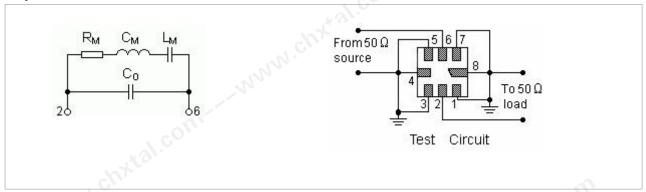
Rating	Value	Unit	
CW RF power dissipation	Р	0	dBm
DC voltage between any terminals	$V_{ m DC}$	±30	V
Operating temperature range	TA	-40 ~ +85	°C
Storage temperature range	$T_{ m stg}$	-40 ~ +85	°C

X Electronic Characteristics

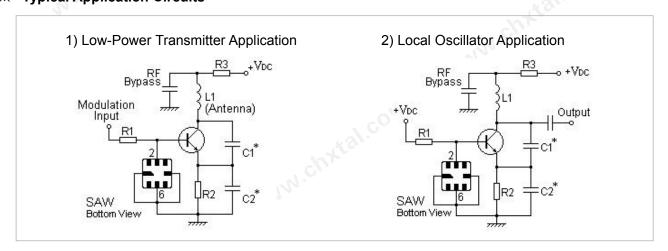
	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	433.845	433.920	433.995	MHz
	Tolerance from 433.920 MHz	Δf_{C}		±75		kHz
Insertion Loss		1L		1.5	2.5	dB
Quality Factor	Unloaded Q	Q_U	8.000	12.800		
	50 Ω Loaded Q	QL	1000	2.000		
Temperature Stability	Turnover Temperature	T ₀	10	25	40	$^{\circ}$
	Turnover Frequency	f ₀		fo±2.7		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging	Absolute Value during the First Year	f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		17.5	26	Ω
	Motional Inductance	L _M		81.06	(0)	μН
	Motional Capacitance	См		1.6596		pF
	Shunt Static Capacitance	C ₀	1.7	1.96	2.3	pF


X Mechanical Dimensions and Marking

------Page 1 --------Tel: +86 (0755) 8938 2532 http://www.chxtal.com E-mail: ch_tech@yeah.net



X Typical Frequency Response



Equivalent LC Model

X Test Circuit

X Typical Application Circuits

------Page 2 -------Tel: +86 (0755) 8938 2532 http://www.chxtal.com E-mail: ch_tech@yeah.net

X Environment Characteristic

1 Thermal Shock:

The components shall remain within the electrical specifications after being kept at the condition of heat cycle conditions: TA=-40 $^{\circ}$ ±3 $^{\circ}$, TB=85 $^{\circ}$ ±2 $^{\circ}$, t1=t2=30min, switch time≤3min& cycle time: 100 times, recovery time: 2h±0.5h.

2 Resistance to solder heat

Submerge the device terminals into the solder bath at 260 $^{\circ}$ C ± 5 $^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. It shall meet the specifications in 2.2.

3 Solder ability

Submerge the device terminals into the solder bath at $245\,^{\circ}$ C $\pm 5\,^{\circ}$ C for 5s, More than 95% area of the soldering pad must be covered with new solder. It shall meet the specifications in 2.2

4 The Temperature Storage:

- 4.1 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the $85\%\pm2\%$ for 500h, recovery time : $2h\pm0.5h$.
- 4.2 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the $-40\%\pm3\%$ for 500h, recovery time: $2h\pm0.5h$.

5 Humidity test:

The components shall remain within the electrical specifications after being kept at the condition of ambient temperature $60\,^{\circ}\text{C}\pm2\,^{\circ}\text{C}$, and 90~96% RH for 500h.

6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m for 3 times. The resonator shall fulfill the specifications in 2.2.

7 Vibration

Subject the device to the vibration for 2 hour each in X, Y and Z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The resonator shall fulfill the specifications in 2.2.

X Remark

1 Static voltage

Static voltage between signal load & ground may cause deterioration &destruction of the component. Please avoid static voltage.

2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.