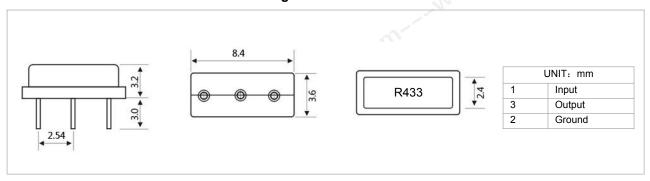


D11 Series

☑ CHD11-R433.85M75K-NB

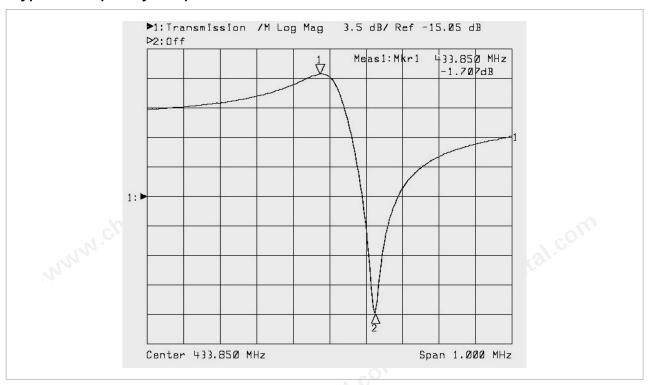
X Application & Features

- RF.Wireless
- Automotive Equipment at Other
- 8.4×3.6×3.2mm Metal Package
- This specification shall cover the characteristics of 1-port SAW resonator with 433.850M used for remote-control security.

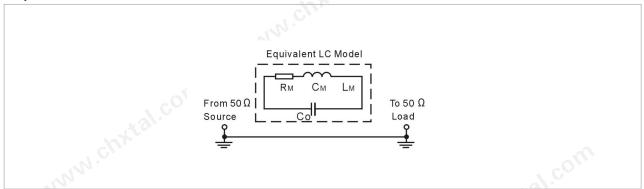

*** Maximum Rating**

Rating	Value	Unit	
CW RF power dissipation	P	10	dBm
DC voltage between any terminals	$V_{ extsf{DC}}$	±30	V
Operating temperature range	T _A	-40 ~ +85	°C
Storage temperature range	T _{stg}	-40 ~ +85	°C

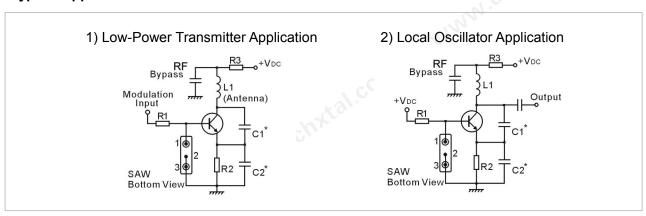
X Electronic Characteristics


Characteristic		Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	433.775	433.850	433.925	MHz
	Tolerance from 433.850 MHz	Δfc		±75		kHz
Insertion Loss		1L		1.7	2.0	dB
Quality Factor	Unloaded Q	Q_U	8.000	10.371		
	50 Ω Loaded Q	Q_L	1000	1800		
Temperature Stability	Turnover Temperature	T ₀	25	40	55	$^{\circ}$
	Turnover Frequency	f ₀		fo±2.7		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging	Absolute Value during the First Year	f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	23	Ω
	Motional Inductance	L _M		79.926	1 C	μН
	Motional Capacitance	См		1.6848		pF
	Shunt Static Capacitance	C ₀	1.7	1.9	2.3	pF

X Mechanical Dimensions and Marking



X Typical Frequency Response



X Equivalent LC Model

Test Circuit

X Typical Application Circuits

------Page 2 ------http://www.chxtal.com E-mail: ch_tech@yeah.net

声表谐振器 SAW Resonator - D11

ShenZhen ChenHang Technologies Co,.Ltd

X Environment Characteristic

1 Thermal Shock:

The components shall remain within the electrical specifications after being kept at the condition of heat cycle conditions: TA=-40 $^{\circ}$ ±3 $^{\circ}$, TB=85 $^{\circ}$ ±2 $^{\circ}$, t1=t2=30min, switch time≤3min& cycle time: 100 times, recovery time: 2h±0.5h.

2 Resistance to solder heat

Submerge the device terminals into the solder bath at $260\,^{\circ}$ C $\pm 5\,^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. It shall meet the specifications in 2.2.

3 Solder ability

Submerge the device terminals into the solder bath at $245\,^{\circ}$ C $\pm 5\,^{\circ}$ C for 5s, More than 95% area of the soldering pad must be covered with new solder. It shall meet the specifications in 2.2

4 The Temperature Storage:

- 4.1 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the $85\%\pm2\%$ for 500h, recovery time: $2h\pm0.5h$.
- 4.2 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the $-40\%\pm3\%$ for 500h, recovery time: $2h\pm0.5h$.

5 Humidity test:

The components shall remain within the electrical specifications after being kept at the condition of ambient temperature $60\,^{\circ}\text{C}\pm2\,^{\circ}\text{C}$, and 90~96% RH for 500h.

6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m for 3 times. The resonator shall fulfill the specifications in 2.2.

7 Vibration

Subject the device to the vibration for 2 hour each in X, Y and Z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The resonator shall fulfill the specifications in 2.2.

X Remark

1 Static voltage

Static voltage between signal load & ground may cause deterioration &destruction of the component. Please avoid static voltage.

2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

3 Solderina

Only leads of component may be soldered. Please avoid soldering another part of component.